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Abstract. We report on a novel order N algorithm, that allows efficient computation of the Landauer-
Büttiker conductance formula in heterojunctions of any complexity. The method is based on the recursive
construction of a bi-orthogonal basis, in which non-hermitian hamiltonian matrices are first tridiagonalized,
and continued-fraction expansion further used to accurately compute off-diagonal Green’s function matrix
elements. The method, of broad range of applicability, is here validated on tight-binding hamiltonians for
nanotube-based intramolecular junctions.

PACS. 73.63.Fg Nanotubes – 71.15.-m Methods of electronic structure calculations – 73.63.-b Electronic
transport in nanoscale materials and structures – 73.22.-f Electronic structure of nanoscale materials:
clusters, nanoparticles, nanotubes, and nanocrystals

Today’s research efforts in molecular electronics [1] or na-
noelectronics rely on both : top-down and bottom-up tech-
nologies to synthesize functional molecular based devices
and circuits (for instance see [2]), as well as advanced com-
putational schemes that enable low cost predictive studies
of operating modes of envisioned devices. Numerical simu-
lation of nanodevices is mainly divided into two parallel re-
search focuses. First, first principles methods are steadily
improved to tackle the physico-chemical complexity at the
atomistic scale [3], although both large scale simulations
and out-of equilibrium problems are of limited implemen-
tation. On the other hand, semi-empirical approaches en-
able calculations on large scale systems [4], albeit limited
to effective hamiltonians with adjustable parameters. The
combination of both approaches opens new perspectives
to circumvent intrinsic limitations of the separated meth-
ods. To envision assessment of large scale device operating
modes, it is essential to develop efficient order N methods
for the computation of current-voltage characteristics (or
similarly conductance spectra).

Efficient computational recursion and order N meth-
ods have been widely employed in solid-state physics
since their introduction by Haydock [5–7]. The recursion
method is based on an eigenvalue approach of Lanczos [8],
and is a completely real-space procedure based on Green’s
functions. This technique is thus particularly well suited
for treating disorder and defect-related problems, and has
been successfully implemented to tackle impurity-level
calculations in semiconductors using the tight-binding
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approximation[9], and electronic structure investigations
for amorphous semiconductors, transition metals and
metallic glasses based on linear-muffin-tin orbitals [10].
Initially, it was extensively employed for computing den-
sity of states, although electronic conductivities, within
the Kubo formalism [11], have also been investigated for
disordered metals [12], or even extended recently to treat
intrinsic conduction mechanism in nanoscopic systems
such as carbon nanotubes [13]. Notwithstanding, to date,
no similar efficient algorithm has been implemented for
the calculation of Landauer-Büttiker conductance [14,15],
given that the general problem involves non-hermitian ma-
trices for which the conventional Lanczos technique fails
to construct a tridiagonal basis.

In this work, an efficient algorithm is proposed to
extend the functionality of recursion-like methods to
quantum transport in heterojunctions. It is based on the
construction of a bi-orthogonal basis that is able to tridi-
agonalize the non-hermitian effective hamiltonian of the
system coupled to electrodes, enabling accurate and nu-
merically stable computation of off-diagonal Green’s func-
tion coefficients through the continued-fraction expansion.
Such an approach offers new perspectives for very large
scale computation of quantum transport in molecular de-
vices.

The general electronic transport theory in the linear
response regime relies on the approach derived by R.
Kubo [11]. In its zero frequency limit, it reduces to the
trace of the operator δ(E−H)V̂xδ(E−H)V̂x, that relates
the spectral measure operator δ(E − H) to the velocity
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operator V̂x. Electronic dc-conductivity is thus seen as a
measure of autocorrelation average of wavepackets veloc-
ities. Landauer and Büttiker have generalized the trans-
port theory for heterojunctions in terms of a transmission
method [14], an approach that has also been reformulated
in rewritting the conductance as a trace of a given opera-
tor (for instance see [15]). Such a formula has the advan-
tage of being general, independent of the dimensionality
of the system and its eventual geometrical and physico-
chemical complications. To express an analytical form for
the conductance of the system under study, it is conve-
nient to dissociate it from the two metallic external elec-
trodes that serve to inject current in and out of the system.
This allows us to assume a suitably well-defined form for
incoming and outgoing scattering states. These electrodes
are further connected to measurement reservoirs, in which
energy dissipation finally takes place. Without loss of gen-
erality, in the coherent regime the trace formula for the
conductance at energy E reads:

G(E) =
2e2

h
Tr

[
ΓL(E)Gr(E)ΓR(E)Ga(E)

]
. (1)

The ΓL,R(E) = i[Σr
L,R(E) − Σa

L,R(E)] are operators
related to the so-called self-energy operators Σr,a

L,R(E)
containing all the information concerning coupling be-
tween the system and the left (L) and right (R) elec-
trodes. The self-energy can be written as Σr,a

L,R(E) =
V †

L,R−Sysg
r,a
L,R(E)VL,R−Sys, where VL−Sys (resp. VR−Sys)

describes the coupling between the System and the L-
electrode (resp. R-electrode), while gr,a

L,R(E) are the re-
tarded and advanced surface Green’s functions of the elec-
trodes [15]. From these definitions, the Green’s function
that propagates electronic states inside the system, and
which is also needed in the trace formula (1), can be ex-
pressed as:

Gr,a(E) =
1

E −HSys − (Σr,a
L (E) +Σr,a

R (E))
(2)

where HSys is the hamiltonian of the system under study,
disconnected from the electrodes. To allow numerical cal-
culations of these expressions, the hamiltonian of the sys-
tem and electrodes must be expressed in terms of a tight-
binding expression expanded within an orthonormal basis
of orbitals. A simple interface geometry is depicted on
Figure 1, but the following development is valid for any
complex interface. The matrice VR−Sys couples a finite
number N of orbitals α of the system to a finite number
of orbitals of the L-electrode. Similarly, VL−Sys couples N ′
orbitals α′ to the R-electrode. N and N ′ are related to the
section of the system close to the interfaces, and to the cut-
off distance in the orbital coupling, generally restricted to
the first neighbours. The finite range of VL,R−Sys implies
the same finite range for the matrices ΓL,R: ΓL (resp. ΓR)
only couples together the N (N ′) orbitals of the system
close to the L-electrode (R-electrode). The trace formula
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Fig. 1. Simple interface configuration in real space for the
heterojunction under consideration. α (resp. α′) refer to the
localized orbitals of the system coupled to the left (resp. right)
electrode.

(1) can be rewritten as:

G =
2e2

h

∑
α,β,α′,β′

〈β|ΓR|α〉〈α|Gr |α′〉〈α′|ΓL|β′〉〈β′|Ga|β〉.

(3)
Hereafter, to simplify the notation, the energy dependence
is omitted. The interface localized states α, β run over the
N orbitals coupled to the L-electrode, and α′, β′ run over
the N ′ orbitals coupled to the R-electrode. The quanti-
ties to calculate are the self-energies Σr,a

L,R (which give the
ΓL,R) and the retarded Green’s function matrix elements
〈α|Gr|α′〉. Σr,a

L,R are related to the surface Green functions
of the semi-infinite electrodes, which are easily computed
by standard recursion or decimation techniques. The main
task is to evaluate the retarded Green functions 〈α|Gr |α′〉
which propagate an electron from the right side to the left
side of the system. One has to computeN×N ′ such matrix
elements. The advanced Green’s function matrix elements,
also needed in equation (3), can then be deduced from the
relation 〈β′|Ga|β〉 = (〈β|Gr |β′〉)∗.

For calculating each non-diagonal Green’s function
〈α|Gr|α′〉, we first express it as a sum of three diagonal
Green’s functions as follows

1
2

[(1 + i)〈ψ+|Gr|ψ+〉+(i− 1)〈ψ−|Gr|ψ−〉−2i〈ψi|Gr|ψi〉]
(4)

where |ψ+〉 = (|α〉 + |α′〉) /√2, |ψ−〉 = (|α〉 − |α′〉) /√2,
and |ψi〉 = (|α〉 + i|α′〉) /√2.

The problem is thus reduced to the evaluation of
〈ψ|Gr|ψ〉, where |ψ〉 is a normalized state. To be used
in this context, the recursion approach must be general-
ized to the case of non-hermitian matrices. Indeed, equa-
tion (2) contains an effective non-hermitian hamiltonian
H = HSys +Σr

L +Σr
R describing the finite system coupled

to the electrodes. A generalization of the recursion method
to the computation of electronic spectra of non-symmetric
hamiltonians was tentatively proposed[16], but its further
implementation has received little consideration until the
work of Benoit et al., who applied a similar approach in
a totally different context [17]. As demonstrated below, it
can actually be efficiently implemented to the Landauer-
Büttiker formalism, which yields a stable, efficient novel
computing tool for nanoelectronics.
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Starting from the normalized vector |ψ〉 and from the
non-hermitian matrix H, we construct a bi-orthogonal
basis {|ψn〉, 〈φn|} defined as follows

|ψn+1〉 = H|ψn〉 − an+1|ψn〉 − bn|ψn−1〉 (5)

〈φn+1| = 〈φn|H − 〈φn|an+1 − 〈φn−1|bn (6)

with the initial conditions |ψ−1〉 = |φ−1〉 = 0, |ψ0〉 =
|φ0〉 = |ψ〉, and the bi-orthogonality condition

〈φn|ψm〉 = 0 if n �= m. (7)

This last condition is equivalent to the following relations
for an and bn:

an =
〈φn|H|ψn〉
〈φn|ψn〉 (8)

bn =
〈φn−1|H|ψn〉
〈φn−1|ψn−1〉 =

〈φn|ψn〉
〈φn−1|ψn−1〉 . (9)

The four equations (5), (6), (8), and (9) allow
recursive determination of the bi-orthogonal ba-
sis and of the coefficients an, bn. Note that in
“ket” notation, equation (6) must be understood as:
|φn+1〉 = H†|φn〉 − a∗n+1|φn〉 − b∗n|φn−1〉. One starts from
|φ0〉 = |ψ0〉 = |ψ〉. At step 0, one computes H|ψ0〉 and
a1 = 〈φ0|H|ψ0〉/〈φ0|ψ0〉 by expanding all the amplitudes
within the tight-binding localized basis. |ψ1〉 and |φ1〉
are then obtained by computing H|ψ0〉 − a1|ψ0〉 and
H†|φ0〉 − a∗1|φ0〉, while the first coefficient b1 is subse-
quently deduced from equation (9). At step 1, H|ψ1〉 is
computed together with a2 = 〈φ1|Ĥ|ψ1〉/〈φ1|ψ1〉. Then
|ψ2〉 and |φ2〉 result from the computation of vectors
H|ψ1〉 − a2|ψ1〉 − b1|ψ0〉 and H†|φ1〉 − a∗2|φ1〉 − b∗1|φ0〉. Fi-
nally, the coefficient b2 is then deduced from equation (9).
Steps n ≥ 2 are exactly similar to step 1. In the basis
{|ψn〉}, H has thus a tridiagonal form:

H =



a1 b1
1 a2 b2

1 a3 b3
1 . .

. .


 . (10)

Hence the recurrence relations (5) and (6) lead to
a non-symmetric matrix and to a non-normalized bi-
orthogonal basis. By choosing a different convention, a
symmetric tridiagonal matrix and/or a normalized basis
could be obtained. But the present convention gives better
numerical stability in the examples considered hereafter.

The quantity 〈ψ|Gr(z = E ± 0+)|ψ〉 = 〈φ0| 1
z−H |ψ0〉

can then be computed by the continued fraction method.
It is equal to the first diagonal element of (z−H)−1 where
H is the tridiagonal matrix (10). Let us callG0(z) this ma-
trix element and define Gn(z), the first diagonal element

of the matrix (z −Hn)−1, with Hn the matrix H without
its n first lines and columns:

Hn =



an bn
1 an+1 bn+1

1 an+2 bn+2

1 . .
. .


 . (11)

From standard linear algebra, it can be shown that

G0(z) =
1

z − a1 − b1G1(z)
, (12)

and replicating such an algorithm, one obtains a
continued-fraction of G0(z):

G0(z) =
1

z − a1 − b1

z − a2 − b2
...

. (13)

In contrast with the standard recursion method, the re-
cursion coefficients an and bn do not show any simple
behaviour for large n. In the type of applications con-
sidered here, a simple truncation of the continuous frac-
tion at sufficiently large n gave a good convergence. One
notes that for large systems, recursion coefficients com-
puted by the bi-orthogonal process might experience sig-
nificant fluctuations, so that a suitable renormalization
procedure could be necessary to control convergence of
the algorithm [17–19].

To summarize, the evaluation of the diagonal Green’s
functions 〈ψ|Gr(z)|ψ〉 is done by a bi-orthogonal re-
cursion approach and a continued fraction expansion.
This allows the computation of off-diagonal Green’s func-
tions via equation (4). The calculation of the Landauer-
conductance is then straightforwardly achieved from
equation (3). Note that the diagonal Green’s function
calculated by this generalized recursion method can also
give the local density of states on chosen orbitals of the
system coupled to the electrodes.

Let us discuss the numerical cost of this algorithm.
With this generalized recursion method, the computation
of a single off-diagonal Green’s function element 〈α|Gr |α′〉
requires a number of operations which scales linearly with
the number N of orbitals in the system, as for the standard
recursion method. This single fact makes this algorithm
very promising for systems which have large transverse
dimensions at least in some parts. Indeed, the well-known
decimation or transfer matrix techniques are unable to
treat systems with too large transverse dimensions, since
they require matrix inversion of a layer hamiltonian [25].
Here, in the less favourable case, the number of Green’s
function elements to calculate is N×N ′ (defined above). If
we consider for instance a cylinder of width W and length
L,N andN ′ are proportional toW 2 and N is proportional
to L × W 2. The numerical cost is then proportional to
L×W 6, similar to standard decimation or transfer matrix
techniques [25]. Fortunately, the number of incoming and
outgoing modes in the electrodes are often much smaller
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Fig. 2. Electronic conductances of several nanotube-based het-
erojunctions. Main frame: Simple junction compared with dou-
ble junction (12,0)-(11,0)-(12,0) junction with length of (11,0)
in order of 5 nm. Inset: double junction with length of (11,0)
smaller than 3 nm.

than N and N ′. The number of Green’s function elements
to calculate is thus much reduced, and the numerical cost
is essentially proportional to N , whatever the geometry
and topological complexity of the system.

As an illustration, the Landauer-Büttiker conductance
of several nanotube based junctions are computed. The
central part is a finite nanotube, which is connected to
two semi-infinite tubes with the same or different helici-
ties. We here concentrate on junctions of nanotubes with
different helicities. Such intramolecular junctions can be
made owing to the introduction of topological disorder
such as pentagon-heptagon pair defects. Their theoretical
study was pioneered by Ph. Lambin et al. [23] and Chico
et al. [20], and is presently the subject of many studies
[20–22]. Recently, experimental evidence of such junctions
was reported [24] thanks to accurate atomic-scale STM
studies. We here concentrate on the (11,0)-(12,0) junction
between a metallic and a semiconducting tube.

The results obtained are in full agreement with prior
studies [23,20], with in particular a conductance gap
driven by the semiconducting tube, and a slight damping
of conductance of the junction with respect to the perfect
single tube devices. Calculations have also been performed
with a more standard procedure [25] and give identical
results. The case of the double-junction deserves particu-
lar attention given its relevance to molecular electronics.
Indeed, such a metal/semiconductor/metal junction can
provide important information about the design of molec-
ular quantum dot or spin devices [26]. In Figure 2, the
conductance is given for a central part of the device made
by the semiconducting tube (11, 0) with length 100nm,
while external leads are provided by semi-infinite (12,0)
metallic tubes. First, one notes that whenever the length
of the (11, 0)-tube is less than 3nm, then direct tunnel-
ing between evanescent scattering states of external leads
occurs within the gap of the system. These states corre-
spond to the metal-induced gap states (MIGS) of bulk the
metal/semiconducting interface, and will play a crucial

role in the Schottky barrier features of the devices [27]. In
contrast, as soon as the tube length becomes larger than 3
nm, direct tunneling is suppressed within the (11, 0)-gap,
which can then begin to really act as a switching canal in
a field-effect transistor device.

In conclusion, we have proposed a novel scheme for
implementing an order N approach to the calculation of
Landauer-Büttiker conductance, a formula that gives di-
rect access to current-voltage responses in the coherent
transport regime, and can be straightfowardly generalized
to out-of-equilibrium situations [15]. The numerical cost is
moderate, roughly scaling with the number of orbitals of
the studied system, and by avoiding any diagonalization
steps, it potentially outperforms any alternative recursive
and decimation-based approaches. Illustration to the case
of carbon-nanotubes based intramolecular junctions was
reported as a demonstration of computational capability,
here limited to the application of effective tight-binding
hamiltonian. Its extension to order N ab-initio real space
methods deserves further consideration.
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Lett. 81, 1278–1281 (1998); L. Chico W. Jaskólski, Phys.
Rev. B 69, 085406 (2004); C.G. Rocha, T.G. Dargam, A.
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